Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Андрей Драгомирович Хлутков

Должность: директор

Дата подписания: 04.04.2024 18:57:58 Федеральное государственное бюджетное образовательное

учреждение высшего образования

880f7c07c583b07b775f6604a630281b13ca9fd2

«РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Северо-Западный институт управления – филиал РАНХиГС

Кафедра бизнес-информатики

(наименование кафедры)

УТВЕРЖДЕНА

новой редакции решением методической комиссии ПО направлениям 38.03.05 «Бизнесинформатика», 09.06.01 «Информатика и вычислительная техника» Северо-Западный институт управления – филиал РАНХиГС Протокол от 28.04.2020 №1

Приложение 7 ОП ВО

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.Б..07.02 Линейная алгебра

(индекс, наименование дисциплины, в соответствии с учебным планом)

Линейная алгебра

(краткое наименование дисциплины)

38.03.05 Бизнес-информатика

(код, наименование направления подготовки)

«Бизнес-аналитика»

(профиль)

бакалавр

(квалификация)

очная

(форма обучения)

Год набора – 2020

Санкт-Петербург, 2020г.

Автор-составитель:

Кандидат технических наук, доцент, доцент кафедры бизнес-информатики Борисова Елена Юрьевна.

Заведующий кафедрой бизнес-информатики, доктор военных наук, профессор Наумов Владимир Николаевич.

СОДЕРЖАНИЕ

- 1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы
- 2. Объем и место дисциплины в структуре образовательной программы
- 3. Содержание и структура дисциплины
- 4. Материалы текущего контроля успеваемости обучающихся и фонд оценочных средств промежуточной аттестации по дисциплине
 - 4.1. Формы и методы текущего контроля успеваемости обучающихся и промежуточной аттестации
 - 4.2. Материалы текущего контроля успеваемости обучающихся
 - 4.3. Оценочные средства для промежуточной аттестации
 - 4.4. Методические материалы
- 5. Методические указания для обучающихся по освоению дисциплины
- 6. Учебная литература и ресурсы информационно-телекоммуникационной сети "Интернет", учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине
 - 6.1. Основная литература
 - 6.2. Дополнительная литература
 - 6.3. Учебно-методическое обеспечение самостоятельной работы
 - 6.4. Нормативные правовые документы
 - 6.5. Интернет-ресурсы
 - 6.6. Иные источники
- 7. Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения программы

1.1. Дисциплина «Линейная алгебра» обеспечивает овладение следующими компетенциями:

Таблица 1.1

Код	Наименование	Код		Наименование этапа освоения
компетенции	компетенции	этапа	освоения	компетенции
		компетенции		
УК ОС-1	Способность применять	УК ОС-1.1		Способность на основе
	критический анализ			критического анализа собранной
	информации и системный			информации об объекте
	подход для решения задач			представить его в виде
	обоснования собственной			структурных элементов и
	гражданской			взаимосвязей между ними.
	мировоззренческой			
	позициии			

2. В результате освоения дисциплины у студентов должны быть сформированы: Таблица 1.2

ОТФ/ТФ	Код	этапа	Результаты обучения
(при наличии	освоения		
профстандарта)/	компетенции		
профессиональные			
действия			
Разработка	УК ОС-1		на уровне знаний:
концепции системы			 дать определения основных понятий и формулирует тео- ремы линейной алгебры;
			• выводить доказательства важнейших теорем, лежащих в основе изучаемых в курсе математических методов.
			на уровне умений:
			• обобщать, анализировать, интерпретировать информа-
			цию, обосновывать цель и предлагать пути ее достиже-
			ния

3. Объем и место дисциплины в структуре ОП ВО

Объем дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единицы /144 академ. часа. Дисциплина реализуется с применением дистанционных образовательных технологий (далее - ДОТ).

Таблина 2

Вид работы	Трудоемкость (акад/астр.часы)
Общая трудоемкость	144/108
Контактная работа с преподавателем	48/36
Лекции	20/13,5
Практические занятия	28/21
Самостоятельная работа	69/51,75
Контроль	27/20,25
Формы текущего контроля	
Форма промежуточной аттестации	Экзамен

Место дисциплины в структуре ОП ВО

Дисциплина Б1.Б.07.02 «Линейная алгебра» является частью раздела «Высшая

математика» относится к обязательной части учебного плана по направлению «Бизнесинформатика» 38.03.05. Преподавание дисциплины «Линейная алгебра» опирается на школьный курс «Алгебры и начала анализа».

В свою очередь она создаёт необходимые предпосылки для освоения программ таких дисциплин, как Б1.В.21. «Дифференциальные и разностные уравнения», Б1.Б.07.03 «Теория вероятностей и математическая статистика», Б1.В.17 «Исследование операций» и ряда других дисциплин.

Дисциплина изучается в 1-м семестре 1-го курса.

Формой промежуточной аттестации в соответствии с учебным планом является зачет и экзамен.

Доступ к системе дистанционных образовательных технологий осуществляется каждым обучающимся самостоятельно с любого устройства на портале: https://sziude.ranepa.ru/. Пароль и логин к личному кабинету / профилю предоставляется студенту в деканате.

4. Содержание и структура дисциплины

Таблица 3

№ п/п	Наименование тем		Объем ди	сциплины,	час.		Форма	
		Всего	Конта обуч преп по видам у	стная работ ающихся с одавателем учебных зан	а	СР	текущего контроля успеваемости**, промежуточной	
			Л	ПЗ	КСР		аттестации***	
Тема 1	Введение. Матрицы и определители	16	4	4		8	T*	
Тема 2	Системы линейных алгебраических уравнений	16	4	4		8	O**	
Тема 3	Векторные пространства. Начала векторной алгебры	26	2	8		16	Т	
Тема 4.	Комплексные числа	16	4	2		10	K***	
Тема 5	Линейные формы. Уравнение прямой на плоскости	15	2	2		11	Т	
Тема 6	Квадратичные формы. Кривые второго порядка	14	2	4		8	Т	
Тема 7	Уравнение прямой в пространстве Уравнения поверхностей. Заключение	14	2	4		8	О, К	
	Контроль	27/20,25						
Проме	жуточная аттестация				2*		Экзамен	
	о (акад./астр. часы):	144/108	20/15	28/21		69/51,75		

Примечание 1:

 T^* - тестирование

 O^{**} – onpoc

 K^{***} - практические контрольные задания

Примечание 2:

Для лиц с нарушениями слуха:

опрос письменный, тест

Для лиц с нарушениями опорно-двигательного аппарата:

опрос устный/ письменный

Содержание дисциплины

Тема 1. Введение. Матрицы и определители.

^{2* -} консультация, не входящая в общий объем дисциплины

Введение. Определение матрицы и определителя. Действия над матрицами и их свойства. Обращение матрицы. Ранг матрицы. Свойства определителей.

Тема 2. Системы линейных алгебраических уравнений.

Основные определения. Матричная форма записи СЛУ. Исследование СЛУ. Методы решения определенной СЛУ (матричный, Гаусса и Крамера). Решение однородной и неопределенной СЛУ.

Тема 3. Векторные пространства. Начала векторной алгебры.

Определение векторного пространства. Примеры векторных пространств. Свойства векторных пространств. Линейная зависимость и независимость векторов. Базис и размерность пространства. Декартовые координаты. Линейные преобразования векторов. Скалярное произведение. Евклидовое пространство. Метрика и норма. Векторное и смешанное произведение. Геометрический смысл скалярного, векторного и смешанного произведения векторов. Ориентация пространства.

Тема 4. Комплексные числа.

Основные определения. Поле комплексных чисел. Алгебраическая форма записи комплексного числа и действия в ней. Тригонометрическая форма записи комплексного числа и действия в ней. Показательная форма записи комплексного числа и действия в ней. Решение алгебраических уравнений. Разложение многочлена на множители в поле вешественных и комплексных чисел.

Тема 5. Линейные формы. Уравнение прямой на плоскости

Точечно-метрические пространства. Линейные формы. Прямая на плоскости. Взаимное расположение прямых на плоскости. Расстояние от точки до прямой.

Тема 6. Квадратичные формы. Кривые второго порядка

Квадратические формы. Кривые второго порядка и их характеристики (эллипс, гипербола, парабола). Уравнения кривых второго порядка в полярной системе координат.

Тема 7. Уравнение прямой в пространстве Уравнения поверхностей. Заключение

Плоскость и прямая в пространстве. Расстояние от точки до плоскости. Взаимное расположение прямых и плоскостей. Поверхности второго порядка. Метод сечений для исследования поверхностей второго порядка. Коники.

5. Материалы текущего контроля успеваемости обучающихся и фонд оценочных средств промежуточной аттестации по дисциплине

Промежуточная аттестация может проводиться с использованием ДОТ.

4.1. Формы и методы текущего контроля успеваемости обучающихся и промежуточной аттестации.

В ходе реализации дисциплины «Линейная алгебра» используются следующие методы текущего контроля успеваемости обучающихся:

Таблица 4.1

Тема (раздел)	Формы (методы) текущего контроля
	успеваемости
Тема 1. Введение. Матрицы и определители	Тестирование
Тема 2. Системы линейных алгебраических уравнений	Письменный опрос
Тема 3. Векторные пространства. Начала векторной	Тестирование, практические контрольные
алгебры	задания
Тема 4. Комплексные числа	Практические контрольные задания
Тема 5. Линейные формы. Уравнение прямой на плоскости	Тестирование
Тема 6. Квадратичные формы. Кривые второго порядка	Тестирование
Тема 7. Уравнение прямой в пространстве Уравнения	Письменный опрос, практические
поверхностей. Заключение	контрольные задания

4.1.2. Экзамен проводится с применением следующих методов (средств) :

Экзамен включает в себя проверку теоретических знаний в форме устного опроса и проверку практических навыков в письменной форме. Во время экзамена проверяется этап освоения компетенции УК ОС-1.1.

Во время проверки сформированности этапа компетенции УК ОС-1.1 оцениваются:

- умение грамотно формулировать основные понятия и положения линейной алгебры и аналитической геометрии;
- умение четко проводить доказательство теорем перечисленных разделов математики;
- представление хода и результата решения;
- оценка правильности ответов;
- рациональность представленного решения.
- 4. 2. Материалы текущего контроля успеваемости обучающихся.

Типовые оценочные материалы по теме 1 : ВВЕДЕНИЕ. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ

6. Тест

7. 1 вариант

1. Соотнести решение задачи с одним из вариантов ответов

Задача: Вычислить определитель матрицы

- 1) -10
- 2) 0
- 3) 10
- 4) 20
- 2. Соотнести решение задачи с одним из вариантов ответов

Задача: Решить неравенство $\begin{vmatrix} 2 & -1 \\ 4 & x \end{vmatrix} > 0$

- 1)x < 22) x=2
- *3) x<-2*
- 3. Соотнести решение задачи с одним из вариантов ответов:

Задача: Вычислить определитель

- 1)3
- 2) 12
- 3) 10
- 4) -12
- 4. Соотнести решение задачи с одним из вариантов ответов

Задача: Вычислить ранг матрицы $A = \begin{bmatrix} 1 & 2 & -3 \\ 3 & 6 & -9 \\ 4 & 5 & -12 \end{bmatrix}$.

- 1) 0
- 2) 1
- 3) 2
- 4) 3
- 5. Соотнести решение задачи с одним из вариантов ответов

$$I) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3)
$$\begin{pmatrix} -1 & 5 & 2 \\ 0 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix} 4 \begin{pmatrix} -1 & -2 & 1 \\ 0 & 0 & -1 \\ 1 & -5 & -2 \end{pmatrix}$$

6.. Соотнести решение задачи с одним из вариантов ответов

Задача: Выполнить действие A-B, где $A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$ и $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$ $I) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$

$$1) \begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$$

$$2)$$
 $\begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$

3)
$$\begin{pmatrix} 2 & -1 \\ 2 & 2 \end{pmatrix}$$

4)
$$\begin{pmatrix} 0 & -1 \\ 2 & 4 \end{pmatrix}$$

7. Соотнести решение задачи с одним из вариантов ответов

Задача: Выполнить действие 2A, где $A = \begin{pmatrix} 3 & 0 \\ 4 & -5 \end{pmatrix}$ $I) \begin{pmatrix} 23 & 20 \\ 24 & -25 \end{pmatrix} \qquad 2) \begin{pmatrix} 6 & 0 \\ 8 & -10 \end{pmatrix} \qquad 3) \begin{pmatrix} 2 & -1 \\ 2 & 2 \end{pmatrix}$ 8.. Соотнести решение задачи с одним из вариантов ответов

Задача: Выполнить действие 2AE-EA, где E – единичная матрица, а $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

1)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 2) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 3) $\begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$ 4) $\begin{pmatrix} -2 & -4 \\ -3 & -8 \end{pmatrix}$

9. Соотнести решение задачи с одним из вариантов ответов.

Задача: Найти размерность произведения матриц

2x23) 2x3 10. Соотнести решение задачи с одним из вариантов ответов

Задача: Найти обратную матрицу к матрице

1)
$$\begin{pmatrix} -0.75 & 0.25 & 0.5 \\ 0.5 & -0.5 & 0 \\ 1.25 & 0.25 & -0.5 \end{pmatrix}$$
 2) $\begin{pmatrix} -0.75 & 0.5 & 1.25 \\ 0.25 & -0.5 & 0.25 \\ 0.5 & 0 & -0.5 \end{pmatrix}$

$$3) \begin{pmatrix} -12 & 4 & 8 \\ 8 & -8 & 0 \\ 20 & 4 & -8 \end{pmatrix} \qquad \qquad 4) \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{-1}{3} & \frac{1}{3} \\ 1 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Ключи:

1	2	3	4	5	6	7	8	9	10
1	4	4	3	2	3	2	1	3	1

8. 2 вариант

1. Соотнести решение задачи с одним из вариантов ответов

Задача: Вычислить определитель матрицы

1) 2 2) -23) 10 4) 16

2. Соотнести решение задачи с одним из вариантов ответов

Задача: Решить неравенство $\begin{vmatrix} x & 9 \\ 1 & -3 \end{vmatrix} < 0$

 $1)x \leq 3$ 4) x > -3

3. Соотнести решение задачи с одним из вариантов ответов:

Задача: Вычислить определитель : $\begin{pmatrix} 1 & 1 & -1 \\ 1 & 6 & -1 \\ 2 & 2 & 0 \end{pmatrix}$

1) 3 2) 12 3) 10 4. Соотнести решение задачи с одним из вариантов ответов

Задача: Вычислить ранг матрицы $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$

- 1)0
- 2) 1
- 3) 2
- 4) 3

5. Соотнести решение задачи с одним из вариантов ответов

Задача: Транспонировать матрицу $\begin{pmatrix} 3 & 1 & 1 \\ -3 & 2 & 0 \\ 1 & 2 & 0 \end{pmatrix}$

- $\begin{array}{c|cccc} I) & \begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & -3 \\ 0 & 2 & 1 \end{pmatrix} & 2) & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

6.. Соотнести решение задачи с одним из вариантов ответов

Задача: Выполнить действие A-B, где $A = \begin{pmatrix} -1 & 0 \\ 7 & 1 \end{pmatrix}$ и $B = \begin{pmatrix} 2 & 5 \\ 0 & -1 \end{pmatrix}$

- $I)\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \qquad 2)\begin{pmatrix} -2 & -5 \\ 14 & 34 \end{pmatrix} \qquad 3)\begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} \qquad 4)\begin{pmatrix} -5 & 0 \\ -7 & -1 \end{pmatrix}$

7. Соотнести решение задачи с одним из вариантов ответов

Задача: Выполнить действие -3A, где $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

- $I)\begin{pmatrix} -13 & -23 \\ -33 & -43 \end{pmatrix} \qquad 2)\begin{pmatrix} -31 & -32 \\ -33 & -34 \end{pmatrix} \qquad 3)\begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix} \qquad 4)\begin{pmatrix} -3 & -6 \\ -9 & -12 \end{pmatrix}$

8.. Соотнести решение задачи с одним из вариантов ответов

Задача: Выполнить действие AE+3EA, где E – единичная матрица, а $A=\begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix}$

- $1) \begin{pmatrix} 0 & 6 \\ -3 & 3 \end{pmatrix} \qquad 2) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad 3) \begin{pmatrix} 0 & 8 \\ -4 & 4 \end{pmatrix} \qquad 4) \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}$

9. Соотнести решение задачи с одним из вариантов ответов

 $\begin{pmatrix} 4 & 2 \\ 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} -10 \\ 5 \end{pmatrix}$. Задача: Найти размерность произведения матриц

- 1)2x2
- 2) 2x1
- 4) 3x2

9

10. Соотнести решение задачи с одним из вариантов ответов

 $A = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 1 & -1 \\ -3 & -2 & -1 \end{pmatrix}$ Задача: Найти обратную матрицу к матрице

- $\begin{array}{c|ccccc}
 1) \begin{pmatrix} 0,75 & -0,25 & -0,5 \\ -0,5 & 0,5 & 0 \\ -1,25 & -0,25 & 0,5 \end{pmatrix} & 2) \begin{pmatrix} -0,75 & 0,5 & 1,25 \\ 0,25 & -0,5 & 0,25 \\ 0,5 & 0 & -0,5 \end{pmatrix}$

3)	$egin{pmatrix} -1 \ 8 \ 20 \end{matrix}$	4 8 -4	4)	$\begin{array}{c} \frac{1}{3} \\ \frac{1}{3} \\ 1 \end{array}$	$\frac{1}{3}$ $\frac{-1}{3}$ $\frac{2}{3}$	$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$
				1	3	3

Ключи:

1	2	3	4	5	6	7	8	9	10
4	4	3	4	4	2	4	3	2	1

Типовые оценочные материалы по теме 2 СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Вопросы для письменного опроса

- 1. Уточните, может ли ранг расширенной матрицы быть меньше ранга основной матрицы системы линейных уравнений?
- 2. Уточните, может ли система иметь ровно 7 решений?
- 3. Запишите условие совместности СЛУ.
- 4. Уточните, можно ли метод Крамера применяться для решения неопределенных СЛУ?
- 5. Уточните, можно ли сделать однозначный вывод о том, что СЛУ только несовместна, если определитель основный матрицы системы равен нулю?

9. 2 вариант

- 1. Уточните, может ли ранг расширенной матрицы однородной СЛУ быть больше ранга основной матрицы.
- 2. Уточните, может ли определенная СЛУ иметь ровно 2 решения.
- 3. Запишите условие определенности однородной СЛУ.
- 4. Уточните, можно ли для решения неопределенных СЛУ применяться матричный метод.
- 5. Определите правило для нахождения числа свободных неизвестных в неопределенных СЛУ.

Типовые оценочные материалы по теме 3 ВЕКТОРНЫЕ ПРОСТРАНСТВА. НАЧАЛА ВЕКТОРНОЙ АЛГЕБРЫ

10. Тест 11 1 рапиант

		11. 1 бариант		
1.	Определить длину вектора	$\vec{a} = [1;2;2]$		
1) 2	2) -6;	3)6;	4) 3	
2. Опре	еделить сумму двух векторов	$\vec{a} = 3\vec{i} - \vec{j} + 2\vec{k}$ и \vec{b}	$=-\vec{i}+2\vec{j}+3\vec{k}$	
1)[2;3]	;2) 2) [3;3;3]	3) 7	4) [2;1;5]	
3. Опре	еделить скалярное произведен	ние векторов $\vec{a} = 0$	$[3;1;4]$ и $\vec{b}=[1;2;6]$	0}
1) 5	2) 11	3) 1	4) 6	
4. Опре	еделить вектор, не являющий			
1) [1;0	, , , , , , , , , , , , , , , , , , ,			
5.	Определить при каком m	векторы $\vec{a} = [2;5;-$	$[-1]$ и $\vec{b} = [m;1;$	7 ортогональны?
1)	0 2) 7	3) 1	4) -1	
6 При	каких значениях (α; β) векто	оры $\vec{a} = [2; \alpha; -4]$ г	и $ec{b} \!=\! [-1;1;eta]$ буду	т коллинеарны?
1)(-2;2)	2) (1;-1)	3) (2;-2)	4) (-1;1)	
7 . Опр	2) (1;-1) еделить при каком значении	m векторы $\vec{a} = 2$	$[2;5;27], \vec{b}=[m;1;7]$	$\vec{c} = \{1;1;3\}$
будут к	омпланарны?			
1) 0	2) 1,75	3) -0,5	4) 7	

· •	-	•			иутативнос		3) ассоц	иативност	ГЬ
-			оторое не		я евклидоі				
1) $C[a,b]$		2) R^{n}		3) V^n		,	$M_{mn/}$		
10.	Определи	ть собств	венные зн	ачения лі	инейного і	преобразо	вания, за	данного в	некото-
					(0 1 0			
					A = -	-3 4 0 -2 1 2)			
ром базг	исе матри	пей			(-	-2 1 2)			
- ·	ес матриі 0	цси	2) 2	3) 3		4) -1		
1)	·		_) _		Ключи:		., 1		
1	2	3	4	5	6	7	8	9	10
4	4	1	2	3	1	1	1	4	2
					13.				
				14. 2	вариант				
1. Опред	целить длі	ину векто	pa $\vec{a} = 4$:-4:-2	}				
1) 2	7	2) -6):	3)(6:	4`) 3		
2. Опред	епить cvv	-) \ иму лвух	rektonor	$\vec{a} = \vec{i} + \vec{\Delta}$	6; j и b̄:	- -2i-i+3	\vec{k}		
1) 2 · 3 ·	2	2)	3.3.3	3)	7	-21 J.3 4) [2	.1.5		
3 Ounor	<u> </u>	2)	[0,0,0]	J)	\vec{a} ров $\vec{a} = \{ -1 \}$.∠⊥رד 21 • 1 • 1 _	, <u>, , , , , , , , , , , , , , , , , , </u>	4.0.1	
	целить ска				ров <i>и</i> — (1			4,0,1	
1) 5	IOHUTI DOI	2) 1		,) 1	4	ł) 6		
4 . Onpeg	целить век	_		_				(2	1 2)
1) $[0;-1]$;0		(2)[1;1;-1]	1}	3) (0,6	5;0;0,4		4) $\left\{\frac{2}{3}; \frac{-}{3}\right\}$	$\frac{1}{2};\frac{2}{3}$
	,							())
				оы $\vec{a} = -$	2;5;-1	и $b = 4;$	m;7 ортс		1?
1)	0	2	7	,	3) 1	_	,	4) 3	
6 При н	саких знач	нениях (а	; β) векто	оры $\vec{a} = 0$	α;-2;6] и	$b=2;\beta$; – 12 буд	цут коллин	неарны?
1)(-2;2)		2) (1;-	1)	3) (2	2;-2)	4)	(-1;4)		
7. Опре	делить пр	и каком	вначении	т векто	оры $\vec{a} = [-$	4;-5;-	6, $\vec{b} = [7]$;m;9 и	
$\vec{c} = \{1; 2, \dots, n\}$;3} будут	комплана	рны?						
1) 8	, ,	2) 1,75		3) -0	,5	4) 7	7		
8. Среди	перечисл	іенных св	ойств век	торного	произведе	ния указа	ть лишне	e:	
	ютная оді				ммутативі			оциативн	ость
					я нормиро				
1) $C[a,b]$	7	2) R^{n}	-	3) V^n			$M_{mn/}$		
		обственні	ые значен	ия линей	і́ного прес	образован	ия, задан	ного в не	котором
					/5	5 4 1			
базисе м	атрицей				A = 0) 3 5			
	1 ,				\(5 4 1 0 3 5 0 1 -1			
2)	0		2) 2	3) 3	,	4) 5		
,			,		Ключи:		, -		
1	2	3	4	5	6	7	8	9	10
3	2	3	2	3	4	8	1	4	4
					16.				
Типовы	е оценоч	ные мате	риалы п	о теме 4	КОМПЛІ	ЕКСНЫЕ	ЧИСЛА		
	ческие к		-						

8. Среди перечисленных свойств смешанного произведения указать лишнее:

17. 1 вариант $(1+2i)^2-(2-i)^2$ 1) Выполнить в алгебраической форме:

2) Решить уравнение:

$$z^2+4z+29=0$$
;

3) Решить геометрически:

$$\begin{cases} 2 < |\overline{z}| < 3 \\ -\frac{\pi}{2} \le \arg z < 0 \end{cases}$$

- 4) Выполнить: $\sqrt[3]{2-2i}$;
- 5) Выполнить в показательной форме: $\frac{(1+i)^7}{(\sqrt{3}-i)^5}$

18. 2 вариант

- 1) Выполнить в тригонометрической форме: $(1+i)^{25}$
- 2) Решить уравнение:

$$z^3 - 1 = 0$$
;

- 3) Решить геометрически: |z-1-i|<1
- 4) Выполнить: $\sqrt[3]{4+4i}$;
- 5) Выполнить в показательной форме: $\frac{(1+\sqrt{3}\,i)^3}{(1-i)^5}$

19. 3 вариант

- 1) Выполнить в алгебраической форме: $\frac{(3+i)^2 (2-i)^3}{(1+i)^4 + 2+i}$
- 2) Решить уравнение:

$$z^4-1=0$$
;

3) Решить геометрически:

$$\begin{cases} 1 < z * \overline{z} < 4 \\ |z| \le 1 \end{cases}$$

- 4) Выполнить в показательной форме : $\sqrt[4]{-4}$;
- 5) Выполнить в тригонометрической форме: $\frac{(2+2i)^3}{(\sqrt{3}-i)^4}$

20. 4 вариант

- 1) Выполнить в алгебраической форме: $\frac{(1+2i)^2-(2-i)^2}{(1-i)^3+(2+i)^2}$
- 2) Решить уравнение:

$$z^2 + 6z + 13 = 0$$
;

- 3) Решить геометрически:
- 2 < |z| < 3
- 4) Выполнить: $\sqrt[3]{2\sqrt{3}-2i}$;
- 5) Выполнить в показательной форме: $\frac{\left(1+i\right)^4}{\left(-\sqrt{3}+i\right)^5}$

21. 5 вариант

- 1) Выполнить в алгебраической форме: $\frac{3}{1+2i} + (2-i)*(4+3i)$
- 2) Решить уравнение:

$$z^3 - 8 = 0$$
;

3) Решить геометрически:

$$\sqrt{z*\overline{z}}>3$$

$$\lim_{\epsilon \to \infty} \sqrt{\frac{\pi}{4}}$$

4) Выполнить: $\sqrt[3]{-8-8}i$;

5) Выполнить в показательной форме: $\frac{(-i)^3}{\left(\sqrt{3}-i\right)^2}$

22. 6 вариант

- 1) Выполнить в алгебраической форме: $(3-4i)*(1+i)^2+\frac{5}{3+i}$
- 2) Решить уравнение:

$$z^2-2i+5=0$$
;

3) Решить геометрически:

$$\begin{cases} |z-1| < 2 \\ |argz| \le \frac{\pi}{4} \end{cases}$$

- 4) Выполнить: $\sqrt[3]{\frac{1}{2} \frac{\sqrt{3}}{2}i}$;
- 5) Выполнить в показательной форме: $\frac{\left(-1+\sqrt{3}i\right)^3}{\left(2+2i\right)^4}$

23. 7 вариант

- 1) Выполнить в алгебраической форме: $\frac{(3-4i)*[1+i]^2}{3+i}$
- 2) Решить уравнение:

$$z^3 + 27 = 0$$
;

3) Решить геометрически:

$$\begin{vmatrix} |z+i| > 2 \\ |argz| \le \frac{\pi}{2} \end{vmatrix}$$

- 4) Выполнить: $\sqrt[4]{\frac{-\sqrt{3}}{2} + \frac{1}{2}i}$;
- 5) Выполнить в показательной форме: $\left(\frac{1+i}{1-i}\right)^3$

24. 8 вариант

- 1) Выполнить в алгебраической форме: $(-i)^{27}$
- 2) Решить уравнение:

$$z^4 - 81 = 0$$
;

3) Решить геометрически:

$$\int |z+2i| > 1$$

$$|1 < |Imz| \le 2$$

- 4) Выполнить: $\sqrt[3]{-1+i}$;
- 5) Выполнить в показательной форме: $\frac{(1+i)^4}{(2\sqrt{3}-2i)}$

Типовые оценочные материалы по теме 5 ЛИНЕЙНЫЕ ФОРМЫ. УРАВНЕНИЕ ПРЯМОЙ НА ПЛОСКОСТИ**.**

Тест по теме 5

25. 1 вариант

1. Определить, какое уравнение не соответствует линейной форме

$$165x + y - 3z = 0$$

$$2 i y = 3x + 2$$

$$3\ddot{c}x\dot{c}^2=2-y$$

4) $x = -4$	1								
2.	. Определ	ить коорд	цинаты ве	ктора нор	омали, ес.	ли $x+2y$	-3z=4)	
					,2,-3,4} х ниже то) v_v=Δ
1) (1;0);		2) (0;4);		3) (1;-2));	4) (1	;2)		-x-y- -
4.	. Определ	ить коорд	цинаты на	правляюц	цего векто	ора прямо	ьй $\frac{x-3}{3} =$	<u>y+1</u> 2	
					4) $\vec{s} = \{ -1 \}$		J	_	
5x - 1 $2x - y$. Определ 2=1	ить прям <u>:</u> 2) <i>x</i> +2 у	ую, перпе /=2	ендикуляр 3) -2 <i>х</i>	оную прям x+ y=4	иой 2 <i>х-</i> 4) <i>х</i> –	y = 4 2 $y = 1$		
6.	. Определ	ить плос	кость, пар	заллельну	ую вектор	$a_{\rm M} \vec{a} = \{3,$	-1,4 и	$\vec{b} = \{-6, 2,$,5 }
1) $x + 3y$	=5	2) $3x - y$	y + 4z = 0	3) <i>x</i>	x - 3y = 2	4) 4	x+y-3z	=2	
	. Определ 2				тю плоскою +z=4	сти 4 <i>х</i> + 4) 3 л	y-3z=2 y-3z-6	x=1	
8.	. Определ	ить плосн	кость, пар	аллельну	ю оси <i>О</i> Z				
1) $z=2$		2) x+y	=1	3) z=	=x+y	4)	x+z=3	/ 	
	. Определ		ояние от		<i>1;0;-1)</i> до 0	плоскост 4)		$\sqrt{14y+7x}$	z=10
,		, .		,	о ез три точ	,	2		
± '	$0), M_{2}(1;$	-1;4), M	(0;3;1)		_				
,	y+6z=27								
2) $10x-7y$ 3) $2x+y=$	•								
4) $3y+z=$									
Ключи:									
1	2	3	4	5	6	7	8	9	10
3	4	3	3	5 4	6	7 4	8 1	9	10
				4	1				
3	4 Эпредели	3	3	4 26. 2		4	1		
$ \begin{array}{c} 1.0 \\ 1.6 \\ 2.0 \\ 1.$	4 Определи	3	3	4 26. 2	1 вариант	4	1		
$ \begin{array}{c} 1.0 \\ 1 & x = \sqrt{y} \\ 2 & x + 2 \end{array} $	4 Определи 7 =4	3	3	4 26. 2	1 вариант	4	1		
$ \begin{array}{c} 1.0 \\ 1.6 \\ 2.0 \\ 1.$	4 Определи 7 =4	3	3	4 26. 2	1 вариант	4	1		
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$	4 Определи 7 = 4 2+3 z=0 . Определ	3 ть, какое ; ить коорд	3 уравнени цинаты ве	4 26. 2 е не соотн	вариант ветствует	4 линейной ли z=3 <i>x</i>	1 і форме — <i>y</i>	4	
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$ 2. (1. $\vec{n} = \{3$	Определи ; = 4 ;+3 z=0 . Определ ;-1;0}	3 ть, какое ить коорд 2) $\vec{n} = \{3$	$\frac{3}{}$ уравнени $\frac{3}{3}$ цинаты ве $\frac{3}{3}$	$\frac{4}{26.2}$ е не соотн ктора нор $3) \vec{n} = \{3, \dots, n\}$	1 вариант ветствует мали, ес. ;-1,-1	4 линейной ли z=3 x 4) n=	1 й форме 	4	1
3 1. (1 $\& x = \sqrt{y}$ 2 $\& x + 2y$ 3) $x - 2y$ 4) $z = 5$ 2. (1 $\& \vec{n} = \{3\}$ 3.	Определи ; = 4 ;+3 z=0 . Определ ;-1;0}	3 ть, какое ить коорд 2) $\vec{n} = \{3$ ить, какая	$\frac{3}{}$ уравнени $\frac{3}{3}$ цинаты ве $\frac{3}{3}$	$\frac{4}{26.2}$ е не соотн ктора нор $3) \vec{n} = \{3, \dots, n\}$	вариант ветствует	4 линейной ли z=3 x 4) n=	1 й форме 	4	1
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$ 2. (1. $\vec{n} = \{3\}$ 3. (1) (0;-1;2)	Определи = 4 z+3z=0 . Определ ;-1;0} . Определ +2y-3z:	3 ть, какое 2) $\vec{n} = [3$ ить, какая = 6 2) (1;1	3 уравнени цинаты ве ;-1} я из переч ;-1);	$\frac{4}{26.2}$ е не соотн ктора нор $3) \vec{n} = \{3, 3, 3\}$ исленных $3)$	вариант ветствует омали, ес.; -1, -1} х ниже то (4;1;0);	4 линейной ли z=3 x 4) n= чек не пр	1 й форме у :{1,3,-1} инадлежи 4) (3;0;-	4 пт плоско	1
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$ 2. (1. $\vec{n} = \{3\}$ 3. (1) (0;-1;2)	Определи = 4 z+3z=0 . Определ ;-1;0} . Определ +2y-3z:	3 ть, какое 2) $\vec{n} = [3$ ить, какая = 6 2) (1;1	3 уравнени цинаты ве ;-1} я из переч ;-1);	$\frac{4}{26.2}$ е не соотн ктора нор $3) \vec{n} = \{3, 3, 3\}$ исленных $3)$	вариант ветствует омали, ес.; -1,-1} х ниже то	4 линейной ли z=3 x 4) n= чек не пр	1 й форме у :{1,3,-1} инадлежи 4) (3;0;-	4 пт плоско	1
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$ 2. (1. $\vec{n} = \{3\}$ 3. (1. (0;-1;2) 4. (1. $\vec{s} = \{3\}$)	Определи = 4 z+3 z=0 Определ ;-1;0} Определ +2 y-3 z: 2); Определ 2)	3 ть, какое ить коорд 2) $\vec{n} = [3]$ ить, каказ =6 2) (1;1 ить коорд $\vec{s} = [-3, -]$	3 уравнени цинаты ве ;-1); цинаты на 2} 3)	4 26.2 е не соотн ктора нор $3) \vec{n} = \{3,$ писленных $3)$ правляют $\vec{s} = \{2, -3\}$	вариант ветствует омали, ес. ; -1, -1 } х ниже то (4;1;0); пего векто в 4) \$ \$	4 линейной ли z=3 x 4) n= чек не при ора прямо ={2;3}	$\frac{1}{1}$ й форме $\frac{-y}{1,3,-1}$ инадлежи $\frac{y}{3}$ ($\frac{3}{3}$ =	4 пт плоско	1
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$ 2. (1. $\vec{n} = \{3$ 3. (4. (1. $\vec{s} = \{3, 5\}$ 5. (5. (1. $\vec{s} = \{3, 5\}$ 6. (1. $\vec{s} = \{3, 5\}$ 7. (1. $\vec{s} = \{3, 5\}$ 8. (1. $\vec{s} = \{3, 5\}$	Определи = 4 2+3 z=0 . Определ ;-1;0} . Определ +2 y -3 z: 2); . Определ ,2} 2) 3	3 ть, какое ить коорд 2) $\vec{n} = \{3$ ить, каказ =6 2) (1;1 ить коорд $\vec{s} = \{-3, -1\}$ ить пряму	3 уравнени цинаты ве ;-1); цинаты на 2 } 3) ую, парал	4 26.2 е не соотн ктора нор $3) \vec{n} = \{3,$ писленных $3)$ правляют $\vec{s} = \{2, -3\}$ плельную	вариант ветствует омали, ес: ;—1,—1} х ниже то (4;1;0); щего векто в} 4) \vec{s} прямой	линейной линейной дии z=3x 4) \vec{n} = чек не при ора прямо \vec{x} = {2;3} \vec{x} +2 \vec{y} = 2	$\frac{1}{1}$ й форме $\frac{-y}{1,3,-1}$ инадлежи $\frac{4}{3}$ ($\frac{3}{3}$ = $\frac{2}{3}$	4 пт плоско	1
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$ 1. $\vec{n} = \{3$ 3. x 1) (0;-1;2 4. 1. $\vec{s} = \{3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	Определи = 4 +3 z=0 Определ ;-1;0 Определ +2 y -3 z 2); Определ ,2 Определ = 2	3 ть, какое 2) $\vec{n} = \{3$ ить, каказ =6 2) (1;1 ить коорд $\vec{s} = \{-3, -$ ить пряму 2) $x - 2$)	3 уравнени цинаты ве ;-1); цинаты на 2} 3) ую, парал y=-2	4 26. 2 е не соотн ктора нор $3) \vec{n} = \{3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$	рмали, ест ;-1,-1} х ниже то (4;1;0); щего векто 3 4) \vec{s} прямой ;-2 y=1	линейной линейной линейной дек 4) $\vec{n} = 4$ ора прямо $\vec{n} = \{2; 3\}$	$\frac{1}{1}$ й форме $\frac{-y}{\{1,3,-1\}}$ й надлежи $\frac{4}{3} (3;0;-1)$ юй $\frac{x-1}{3} = \frac{2}{x-y} = 2$	4 1) y-2 2	сти
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$ 1. $\vec{n} = \{3$ 3. x 1) (0;-1;2 4. 1. $\vec{s} = \{3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	Определи = 4 +3 z = 0 Определ ; -1; 0 Определ +2 y -3 z 2); Определ 2) 3 Определ 2) 3 Определ 2) 3	3 ть, какое ить коорд 2) $\vec{n} = \{3$ ить, какая =6 2) (1;1 ить коорд $\vec{s} = \{-3, -$ ить пряму 2) $x - 2$ у ить плос	3 уравнени цинаты ве ;-1); цинаты на 2 3) ую, парал у=-2 кость, пар	$\frac{4}{26.2}$ е не соотн ктора нор $3) \vec{n} = \{3, 3\}$ писленных $\vec{s} = \{2, -3\}$ правляют $\vec{s} = \{2, -3\}$ плельную $3) 2x$ раллельную $3) 2x$	вариант ветствует омали, ес: ;—1,—1} х ниже то (4;1;0); щего векто в} 4) \vec{s} прямой	$\frac{4}{\pi}$ линейной $z=3x$ $4)$ $\vec{n}=$ чек не при $z=\{2;3\}$ $x+2y=2$ $z=\{4\}$ $z=\{4\}$ $z=\{1\}$	$\frac{1}{1}$ й форме $\frac{-y}{1,3,-1}$ инадлежи $\frac{x-1}{3} = \frac{2}{1,0}$ и	$\frac{4}{1}$ 1) $\frac{y-2}{2}$ $\vec{b} = \{-1,2,$	сти
3 1. (1. $x = \sqrt{y}$ 2. $x + 2y$ 3) $x - 2y$ 4) $z = 5$ 2. (1. $\vec{n} = \{3\}$ 3. (1. $\vec{n} = \{3\}$ 4. (1. $\vec{s} = \{3\}$ 5. (1. $y + 2x$ 6. (1. $x + y = \{3\}$ 7. (7. (1. $x + y = \{3\}$ 8. (1. $x + y = \{3\}$ 9. (1. $x + y =$	Определи	3 ть, какое ить коорд 2) $\vec{n} = \{3$ ить, какая =6 2) (1;1 ить коорд $\vec{s} = \{-3, -$ ить прям; 2) $x - 2$ ить плос 2) $x - y$ ить плос	3 уравнени цинаты ве ;-1); цинаты на 2} 3) ую, парал у=-2 кость, пар ;+4 z=0 кость, пер	$\frac{4}{26.2}$ е не соотно $\frac{3}{n} = \frac{3}{3}$ правляют $\frac{3}{3} = \frac{2}{3}$ правляют $\frac{3}{3} = \frac{2}{3}$ пельную $\frac{3}{3} = \frac{2}{3}$ опендикулопендикулопендикул	вариант ветствует омали, ест ;—1,—1} х ниже то (4;1;0); щего векто ;—2 у=1 ую вектор —3 у—z=2 лярную ве	линейной $z=3x$ 4) $\vec{n}=$ чек не при $z=3x$ 4) 2 $z=3$ 4) 2 ам $\vec{a}=\{1,2,4\}$ ектору $\vec{a}=\{1,2,4\}$	$\frac{1}{1}$ й форме $\frac{-y}{1,3,-1}$ инадлежи $\frac{x-1}{3} = \frac{2}{1,3}$ и $\frac{x-1}{3} = \frac{2}{1,0}$ и $\frac{x-y-1}{1,0}$ и $x-$	$\vec{b} = \{-1, 2, 3\}$	сти
3 1. ($1 \stackrel{?}{i} x = \sqrt{y}$ $2 \stackrel{?}{i} x + 2 \stackrel{?}{y}$ 3) $x - 2 \stackrel{?}{y}$ 4) $z = 5$ 2. $1 \stackrel{?}{i} \vec{n} = \{3$ 3. x 1) $(0; -1; 2)$ 4. $1 \stackrel{?}{i} \vec{s} = \{3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	Определи = 4 2+3 z=0 Определ ;-1;0} Определ +2 y -3 z: 2); Определ =2 Определ =2 Определ =2 Определ =2 Определ =2	3 ть, какое шть коорд 2) $\vec{n} = \{3$ шть, какая =6 2) (1;1 шть коорд $\vec{s} = \{-3, -$ шть прям; 2) $x - 2y$ шть плос 2) $x - y$ шть плос 2) $x - y$	3 уравнени цинаты ве ;-1); цинаты на 2	$\frac{4}{26.2}$ е не сооти ктора нор $3) \vec{n} = \{3, 1000000000000000000000000000000000000$	вариант ветствует омали, ес: ;—1,—1} х ниже то (4;1;0); щего векто (4;2 у=1 ую вектор —3 у—z=2 лярную ве 4 у+z=0	линейной $z=3x$ 4) $\vec{n}=$ чек не при $z=\{2;3\}$ $z=\{2;3\}$ $z=\{2,3\}$ $z=\{2,4\}$ ам $\vec{a}=\{1,2,4\}$ ектору $\vec{a}=\{3,2,4\}$ $z=\{3,4\}$	$\frac{1}{1}$ й форме $\frac{-y}{\{1,3,-1\}}$ инадлежи $\frac{x-1}{3} = \frac{2}{[x-y=2]}$ и $\frac{x-y-2}{[x-y+z=0]}$ и $\frac{y+z=0}{[x-y+z=0]}$	$\vec{b} = \{-1, 2, 3\}$	сти
3 1. ($1 \stackrel{?}{i} x = \sqrt{y}$ $2 \stackrel{?}{i} x + 2 \stackrel{?}{y}$ 3) $x - 2 \stackrel{?}{y}$ 4) $z = 5$ 2. $1 \stackrel{?}{i} \vec{n} = \{3$ 3. x 1) $(0; -1; 2)$ 4. $1 \stackrel{?}{i} \vec{s} = \{3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	Определи = 4 2+3 z=0 Определ ;-1;0} Определ +2 y -3 z: 2); Определ =2 Определ =2 Определ =2 Определ =2 Определ =2	3 ть, какое шть коорд 2) $\vec{n} = \{3$ шть, какая =6 2) (1;1 шть коорд $\vec{s} = \{-3, -$ шть прям; 2) $x - 2y$ шть плос 2) $x - y$ шть плос 2) $x - y$	3 уравнени цинаты ве ;-1); цинаты на 2 3) ую, парал у=-2 кость, пар г+4 z=0 кость, пер +z=2 кость, неп	$\frac{4}{26.2}$ е не соотно $\frac{3}{n} = \frac{3}{3}$ правляют $\frac{3}{3} = \frac{2}{3}$ правляют $\frac{3}{3} = \frac{2}{3}$ пельную $\frac{3}{3} = \frac{2}{3}$ пендикул $\frac{3}{3} = \frac{3}{3}$ пендикул $\frac{3}{3} = \frac{3}{3}$ пендикул $\frac{3}{3} = \frac{3}{3}$	вариант ветствует омали, ест ;—1,—1} х ниже то (4;1;0); щего векто ;—2 у=1 ую вектор —3 у—z=2 лярную ве	линейной $z=3x$ 4) $\vec{n}=$ чек не при $z=3x$ 4) 2 $z=3x$ 4) 2 $z=3x$ 4) 2 $z=3x$ 4) 2 $z=3x$ 4) $z=3x$ 4) $z=3x$ 4) $z=3x$ 4) $z=3x$ 6 кости $z=3x$ 6 кости $z=3x$	$\frac{1}{4}$ форме $\frac{-y}{\{1,3,-1\}}$ инадлежи $\frac{4}{3}$ (3;0;- $\frac{x-1}{3}$ = $\frac{2}{\{2,-y=2\}}$ $\frac{2}{\{3,-1,4\}}$ $\frac{3}{\{4,y+z=0\}}$	$\vec{b} = \{-1, 2, 3\}$	сти

1)0

2) -1

3)5

4) 1

10. Найти плоскость, проходящую через три точки

 $M_1(1;0;1), M_2(1;1;0), M_3(0;1;1)$

1) x+y+z=2

2) x+z=2

3) x+y=1

4) x-v+z=2

Ключи:

1	2	3	4	5	6	7	8	9	10
1	3	1	3	4	1	2	3	4	1

Типовые оценочные материалы по теме 6 КВАДРАТИЧНЫЕ ФОРМЫ. КРИВЫЕ ВТОРОГО ПОРЯДКА

Тест по теме 6.

1 вариант

1. Указать, какое из выражений не является квадратичной формой

1)
$$x^2 - y^2$$

3)
$$3x + 2y$$

4)
$$x^2 + 3xy$$

2. Указать, какое из следующих уравнений определяет эллипс

$$1 \stackrel{?}{\iota} 16x \stackrel{?}{\iota}^2 + 9y^2 - 64x - 54y - 161 = 0;$$

2)
$$y=2x^2-12x+14$$
.

3)
$$16x^2-2y^2+32x-100y-284=0$$
;

4)
$$y = \frac{-1}{6x^2} + 2x - 7$$

3.. Определить тип кривой второго порядка, заданного в полярной системе

координат

$$r = \frac{5}{1 - \cos\varphi}$$

1) гипербола

2) эллипс

3) парабола

4) окружность

ербола 2) эллипс 3) парабола 4) окружность **4.** Определить каноническое уравнение гиперболы, если ее полуоси равны

$$1 \frac{x^2}{2} + \frac{y^2}{5} = 1$$

2)
$$\frac{x^2}{25} - \frac{y^2}{9} = 1$$

$$1 \frac{x^2}{3} + \frac{y^2}{5} = 1$$
 2) $\frac{x^2}{25} - \frac{y^2}{9} = 1$ 3) $\frac{x^2}{3} - \frac{y^2}{5} = 1$ 4) $\frac{x^2}{25} + \frac{y^2}{9} = 1$

4)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

5. Определить эксцентриситет кривой вида $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 1) 1 2) 0,75 3) 1,25 **6.** Определить квадратичную форму, соответствующую матрице $A = \begin{pmatrix} 9 & 3 \\ 3 & 16 \end{pmatrix}$

1)
$$9x^2 + 6xy + 16y^2$$

2)
$$16x^2 + 6xy + 9y^2$$

3)
$$3x^2+3xy+4y^2$$

4)
$$9x^2 - 3xy + 16y^2$$

7. Определить величину эксцентриситета кривой $y=2x^2+12x+5$

1) 0

2) 1

3) 1,25

4) 0,5

8. Определить расстояние между фокусами коники $\frac{x^2}{9} - \frac{y^2}{16} = 1$

1) 8

2) 4

9. Среди представленных уравнений указать то, которое описывает вырожденный случай кривой второго порядка

10. Указать тип кривой, асимптоты которой заданы уравнениями $y = \mp k_1 x + k_2$

- эллипс
- 2) парабола
- 3) гипербола
- 4) окружность

Ключи:

1	2	3	4	5	6	7	8	9	10
3	1	3	2	3	1	2	4	3	3

2 вариант

1. Указать, какое из выражений не является квадратичной формой

- 1) $x^2 + 2y^2$
- 2) $4x^3 + 2y^2$
- **3)** 5 *xy*
- **4)** $6x^2 + 4xy + y^2$

2. Указать, какое из следующих уравнений определяет гиперболу

$$1 \stackrel{?}{\iota} 16x \stackrel{?}{\iota}^2 + 9 y^2 - 64x - 54y - 161 = 0;$$

- 2) $y=2x^2-12x+14$. 3) $16x^2-2y^2+32x-100y-284=0$;
- 4) $y = \frac{-1}{6x^2} + 2x 7$

3. Определить тип кривой второго порядка, заданного в полярной системе координат $r\!=\!\!\frac{3}{2\!-\!\cos\!\phi}$

$$r = \frac{3}{2 - \cos \varphi}$$

- 1) гипербола
- эллипс
- 3) парабола
- 4) окружность

4. Определить каноническое уравнение эллипса, если ее полуоси равны

$$1\frac{x^2}{3} + \frac{y^2}{5} = 1$$

- 2) $\frac{x^2}{25} \frac{y^2}{9} = 1$ 3) $\frac{x^2}{3} \frac{y^2}{5} = 1$ 4) $\frac{x^2}{25} + \frac{y^2}{9} = 1$

5. Определить эксцентриситет кривой вида $y^2 = 6x$ 2) 0,75 3) 1,25

- 1) 1

6. Определить квадратичную форму, соответствующую матрице $A = \mathcal{L}$

- 1) $4x^2 2xy + 25y^2$
- 2) $25x^2 2xy + 4y^2$
- 3) $4x^2 4xy + 25y^2$
- 4) $2x^2 2xy + 5y^2$

7. Определить величину эксцентриситета кривой $4x^2+8x+4y^2-16y=20$

- 1) 0

8. Определить расстояние между фокусами коники $\frac{x^2}{9} + \frac{y^2}{16} = 1$

- 1) $2\sqrt{7}$
- 2) 4

9. Среди представленных уравнений указать то, которое описывает вырожденный случай кривой второго порядка

- 1) $x^2 y^2 = 4$
- 2) 2 = yx
- 3) $x^2 y^2 = 0$
- 10. Указать тип замкнутой кривой второго порядка

1)	эллипс	2) па	рабола	3)	гипербо	ола	4) or	сружності	•
Ключи:									
1	2	3	4	5	6	7	8	9	10
2	3	2	4	1	3	1	1	3	1

Типовые оценочные материалы по теме 7 УРАВНЕНИЕ ПРЯМОЙ В ПРОСТРАНСТВЕ. УРАВНЕНИЯ ПОВЕРХНОСТЕЙ. ЗАКЛЮЧЕНИЕ

Вопросы для письменного опроса

27. 1 вариант

- 1. Укажите способы задания прямой в пространстве?
- 2. Запишите условие параллельности прямых в пространстве.
- 3. Перечислите, какие поверхности задаются квадратическими формами в пространстве.
- 4. Запишите уравнение однополостного гиперболоида.
- 5. Запишите в общем виде уравнение эллипсоида с центром в точке C(1;-2;0).

2 вариант

- 1. Укажите способы задания плоскости в пространстве?
- 2. Объясните, почему прямую в пространстве нельзя определить с помощью вектора нормали и точкой, принадлежащей этой прямой.
- 3. Перечислите, какие поверхности задаются линейными формами в пространстве.
- 4. Запишите уравнение эллиптического параболоида.
- 5. Запишите в общем виде уравнение кругового конуса с центром в точке C(-1;2;0).

Практические контрольные задания по теме 7

Даны точки A(3,4,8), B(0,1,4), C(-1,2,2), D(2,0,1).

- 1. Проверить, лежат ли эти точки в одной плоскости;
- 2. Вычислить объем призмы;
- 3. Вычислить расстояние от точки А до плоскости (ВСD)
- 4. Записать уравнение прямой ВС
- 5. Записать уравнение плоскости АВС
- 6. Найти расстояние от точки D до плоскости (ABC)
- 7. Найти угол меду ребрами AD и BC
- 8. Найти угол между плоскостями ABC и DBC

	1 001 11101114			
28.	A	В	C	D
29. Вариант 1	(3,4,8)	(0,1,4)	(-1,2,2)	(2,0,1)
30. Вариант 2	(0,0,0)	(-1,-1,0)	(0,1,1)	(1,0,1)
31. Вариант 3	(1,-2,0)	(2,2,0)	(0,0,0)	(-1,0,1)
32. Вариант 4	(0,0,0)	(0,2,0)	(-2,0,0)	(0,0,1)
33. Вариант 5	(1,1,1)	(0,0,0)	(1,0,-1)	(1,1,-2)
34. Вариант 6	(1.2.1)	(1,-1,1)	(2,0,-2)	(1.12)
35. Вариант 7	(1,-2,1)	(1,-1,-1)	(2,0,-2)	(1,1,-3)
36. Вариант 8	(2,1,1)	(0,1,-1)	(1,12)	(2,0,-1)
37. Вариант 9	(4,0,3)	(3,2,1)	(1,1,4)	(-2,3,3)
38. Вариант 10	(2,0,1)	(-1,2,2)	(0,1,4)	(3,4,8)

Оценочные средства для промежуточной аттестации. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Показатели и критерии оценивания компетенций с учетом этапа их формирования

Таблица 4.2

Код	Наименование	Код	Наименование	этапа	освоения

компетенции	компетенции	этапа компетенции	освоения	компетенции
УК ОС-1	Способность применять критический анализ информации и системный подход для решения задач обоснования собственной гражданской мировоззренческой позиции	УК ОС-1.1		. Способность на основе критического анализа собранной информации об объекте представить его в виде структурных элементов и взаимосвязей между ними

Таблина 4.3

Этап освоения компетенции	Показатель оценивания	Критерий оценивания
TWO GOLD		
УК ОС-1.1 Способность на основе критического анализа собранной информации об объекте представить его в виде структурных элементов и взаимосвязей между ними.	Самостоятельно собирает сведения и осуществляет оценку достоверности собранной информации. Производит декомпозицию описываемого объекта на структурные элементы. Устанавливает иерархические связи между элементами.	Собрана полная информация об объекте. Исключена недостоверная информация. Названы все структурные элементы. Между элементами установлены прямые и опосредованные
		взаимосвязи. Выстроена иерархия элементов.

Для оценки сформированности компетенций, знаний и умений, соответствующих данным компетенциям, используются контрольные вопросы, а также задачи.

Типовые вопросы, выносимые на экзамен:

Матрицы и определители

- 1. Понятие матрицы m*n. Действия над матрицами (умножение на число, сложение) и их свойства.
- 2. Умножение матриц.
- 3. Транспонирование матриц.
- 4. Свойства матриц. Эквивалентные преобразования матриц.
- 5. Определители.
- 6. Свойства определителей и методы их вычислений.
- 7. Миноры и алгебраические дополнения. Вычисление определителя разложением по строке (столбцу).
- 8. Обратная матрица. Вычисление.
- 9. Ранг матрицы.

Системы линейных уравнений

- 10. Понятие о системе линейных алгебраических уравнений.
- 11. Условие совместимости (разрешимости) системы линейных уравнений (Теорема Кронекера-Капелли).
- 12. Методы решения определенных систем алгебраических уравнений (Крамера, матричный, Гаусса).
- 13. Решение произвольных систем алгебраических уравнений.

Комплексные числа

- 14. Понятие комплексного числа.
- 15. Модуль и аргумент комплексного числа.

- 16. Алгебраическая форма комплексного числа. Действия над комплексными числами в алгебраической форме
- 17. Тригонометрическая форма комплексного числа. Действия над комплексными числами в тригонометрической форме
- 18. Показательная форма комплексного числа

Линейные пространства и их приложения

- 19. Линейные пространства. Определение. Элементы линейного пространства.
- 20. Определение n-го вектора (элемента). Операции над векторами.
- 21. Евклидово пространство. Скалярное произведение векторов. Длина вектора. Определение угла между векторами.
- 22. Условие ортогональности двух векторов. Механический смысл скалярного произведения.
- 23. Условие коллинеарности двух векторов. Геометрический смысл определителя второго порядка.
- 24. Векторное произведение векторов.
- 25. Смешанное произведение векторов.

Элементы аналитической геометрии

- 26. Прямая на плоскости. Уравнение прямой в отрезках.
- 27. Нормальная форма уравнения прямой. Угол между прямыми. Расстояние от точки до прямой.
- 28. Кривые второго порядка: окружность, эллипс.
- 29. Кривые второго порядка: парабола, гипербола и их геометрические свойства.
- 30. Плоскость. Уравнение плоскости в отрезках. Нормальная форма уравнения плоскости.
- 31. Плоскость и прямая в пространстве. Угол между плоскостями. Угол между прямыми. Угол между прямой и плоскостью.
- 32. Плоскость. Уравнение плоскости в отрезках.
- 33. Нормальная форма уравнения плоскости, уравнение плоскости, проходящей через три заданные точки.
- 34. Плоскость и прямая в пространстве.
- 35. Угол между плоскостями. Угол между прямыми.
- 36. Угол между прямой и плоскостью.
- 37. Канонические и параметрические уравнения прямой.
- 38. Цилиндрические поверхности.
- 39. Конусы
- 40. Поверхности вращения.
- 41. Канонические уравнения поверхностей второго порядка.

Типовые контрольные задания на экзамен:

Решить задачу:

- 1) Вычислить норму $\|[3a-b,7b-2a]\|$, если $\|a\|=2,\|b\|=3,\varphi=\frac{\pi}{3}$
- 2) Вычислить: $\sqrt[3]{-8i}$;
- 3) Можно ли построить параллелепипед на векторах: $\vec{x} = \vec{i} \vec{k}$; $\vec{y} = \vec{i} \vec{j} \vec{k}$; $\vec{z} = \vec{j} 2\vec{k}$.
- 4) Определить тип кривой и найти ее характеристики

$$16x^2 - 9y^2 - 64x - 54y - 161 = 0$$
;

$$\begin{pmatrix} x & 1 & 1 & 0 & 1 \\ 0 & y & 0 & 0 & 1 \\ 0 & 1 & z & 0 & 1 \\ 1 & 1 & 1 & a & 1 \\ 0 & 0 & 0 & 0 & b \end{pmatrix}$$

6) Решить систему уравнений
$$\begin{cases} 2x - y = (-1,0,0) \\ x + 2y - z = (-2,-2,1) \\ y + z = (-2,-5,0) \end{cases}$$

7) Достроить базис до ортогонального $\vec{x} = [0;4;-1], \vec{y} = \{4;1;4\}$

7) Достроить базис до ортогонального
$$x = [0; 4; -1]$$
8) Найти обратную матрицу, если $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$
9) Решить неравенство $\begin{vmatrix} 3 & -2 & 1 \\ 1 & x & -2 \\ -1 & 2 & -1 \end{vmatrix} < 0$.
10) Проверить, лежат ли точки в одной плоскости,

9) Решить неравенство
$$\begin{vmatrix} 3 & -2 & 1 \\ 1 & x & -2 \\ -1 & 2 & -1 \end{vmatrix} < 0.$$

10) Проверить, лежат ли точки в одной плоскости, если A(2,1,-1), B(0,0,0), C(1,1,-1), D(3,2,-1).

11) Найти угол между прямой
$$\frac{x-2}{-1} = \frac{y}{0} = \frac{z+1}{2}$$
 и плоскостью $2x+y-4z+1=0$.

Шкала оценивания.

Оценка результатов производится на основе балльно-рейтинговой системы (БРС). Использование БРС осуществляется в соответствии с приказом от 28 августа 2014 г. №168 «О применении балльно-рейтинговой системы оценки знаний студентов». БРС по дисциплине отражена в схеме расчетов рейтинговых баллов (далее – схема расчетов). Схема расчетов сформирована в соответствии с учебным планом направления, согласована с руководителем научно-образовательного направления, утверждена деканом факультета. Схема расчетов доводится до сведения студентов на первом занятии по данной дисциплине и является составной частью рабочей программы дисциплины и содержит информацию по изучению дисциплины, указанную в Положении о балльно-рейтинговой системе оценки знаний обучающихся в РАНХиГС.

На основании п. 14 Положения о балльно-рейтинговой системе оценки знаний обучающихся в РАНХиГС в институте принята следующая шкала перевода оценки из многобалльной системы в пятибалльную:

Таблица 4.4

Количество баллов	Количество баллов		
	прописью	буквой	
96-100	отлично	A	
86-95	онрилто	В	
71-85	хорошо	С	
61-70	хорошо	D	
51-60	удовлетворительно	Е	

Шкала перевода оценки из многобалльной в систему «зачтено»/ «не зачтено»:

Таблица 4.5

от 0 до 50 баллов	«не зачтено»
от 51 до 100 баллов	«зачтено»

Примечание: если дисциплина изучается в течение нескольких семестров, схема расчета приводится для каждого из них.

Критерии оценок

оценка	Результаты работы в	Результаты экзамена
	семестре	
неудовлетворительн	По итогам работы	Не владеет базовыми
0	(включая посещения) студент	понятиями, не умеет решать
	набрал менее 40 баллов	элементарные задачи по
		курсу
удовлетворительно	По итогам работы	Владеет базовыми
	(включая посещения) студент	понятиями, умеет решать
	набрал не менее 40 баллов	элементарные задачи по
		курсу
хорошо	По итогам работы	Владеет базовыми
	(включая посещения) студент	понятиями, но допускает
	набрал не менее 50 баллов	погрешности при
		доказательстве теорем,
		умеет решать задачи любого
		уровня сложности по курсу
		(допускаются незначи-
		тельные арифмтические
		ошибки)
отлично	По итогам работы	Свободно владеет
	(включая посещения) студент	материалом курса, умеет
	набрал менее 60 баллов	решать задачи любого
		уровня сложности.

39.

5. Методические указания для обучающихся по освоению дисциплины

Рабочей программой дисциплины предусмотрены следующие виды аудиторных занятий: лекции, практические занятия, контрольная и лабораторная работы. На лекциях рассматриваются наиболее сложный материал дисциплины. Для развития у студентов креативного мышления и логики в каждом разделе предусмотрены теоретические положения, требующие самостоятельного доказательства. Кроме того, часть теоретического материала предоставляется на самостоятельное изучение рекомендованным источникам для формирования навыка самообучения.

Практические занятия предназначены для самостоятельной работы студентов по решению конкретных задач линейной алгебры и аналитической геометрии. Каждое практическое занятие сопровождается домашними заданиями, выдаваемыми студентам для решения во внеаудиторное время. Для формирования у студентов навыка совместной работы в коллективе некоторые задания решаются с помощью разбиения на группы методом мозговой атаки.

Лабораторная работа проводится в компьютерном классе с использованием электронных таблиц Excel.

С целью контроля сформированности компетенций разработан фонд контрольных заданий. Его использование позволяет реализовать балльно-рейтинговую оценку, определенную приказом от 28 августа 2014 г. №168 «О применении балльно-рейтинговой системы оценки знаний студентов».

Для работы с печатными и электронными ресурсами СЗИУ имеется возможность доступа к электронным ресурсам. Организация работы студентов с электронной библиотекой указана на сайте института (странице сайта – «Научная библиотека»).

Контрольные вопросы для подготовки к занятиям Таблипа 5

№ п/п	Наименование темы или раздела дисциплины	Контрольные вопросы для самопроверки
1	Матрицы. Определители.	 Дать определение 1.Понятие матрицы т*n. Типы матриц. 2. Действия над матрицами и их свойства. 3. Транспонирование матриц. 4. Определитель матрицы. Свойства определителей и методы их вычисления. Миноры и алгебраические дополнения элементов матрицы. 5. Обратная матрица. Определение. Вычисление. 6. Ранг матрицы. Собственные числа и собственные векторы матрицы.
2	Системы линейных алгебраических уравнений.	Сформулировать 1. Понятие о системе линейных алгебраических уравнений. Матричная форма записи системы уравнений. 2. Теорема Кронекера-Капелли. 3. Методы решения определенных систем.
3	Векторные пространства. Начала векторной алгебры	Дать определение и сформулировать 1. Векторы. Линейные операции над векторами. Направляющие косинусы и длина вектора. 2. Скалярное произведение векторов и его свойства. Условие ортогональности двух векторов. Механический смысл скалярного произведения. Условие коллинеарности двух векторов. 3. Векторное и смешанное произведения векторов.
4	Комплексные числа	Дать определение и перечислить 1. Понятие комплексного числа. 2. Модуль и аргумент комплексного числа. 3. Алгебраическая форма комплексного числа . Действия над комплексными числами в алгебраической форме 4. Тригонометрическая форма комплексного числа . Действия над комплексными числами в тригонометрической форме 5. Показательная форма комплексного числа
5	Линейные формы. Уравнения прямой на плоскости.	Дать определение и перечислить 1. Прямая на плоскости. 2. Прямоугольная система координат. Полярная система координат. 3. Уравнение прямой, проходящей через две точки. 4. Уравнение прямой по заданной точке и угловому коэффициенту 5. Уравнение прямой в отрезках. 6. Нормальная форма уравнения прямой. Угол между прямыми. Расстояние от точки до прямой. 7. Кривые второго порядка: окружность, эллипс, парабола, гипербола и их геометрические свойства. 8. Канонические уравнения эллипса, окружности,

		параболы и гиперболы
6	Квадратичные формы. Кривые второго порядка	 Дать определение и перечислить Квадратичная форма. Каноническое уравнение кривой второго порядка Кривые второго порядка: окружность, эллипс. Эллипс. Фокусное расстояние. Директриса. Эксцентриситет. Гипербола и ее геометрические свойства. Каноническое уравнение гиперболы. Уравнение и свойства параболы.
7	Уравнение прямой в пространстве. Уравнения поверхностей.	Дать определение и перечислить 1. Плоскость. Уравнение плоскости в отрезках. 2. Нормальная форма уравнения плоскости, уравнение плоскости, проходящей через три заданные точки. 3. Плоскость и прямая в пространстве. 4. Угол между плоскостями. Угол между прямыми.

6. Учебная литература и ресурсы информационно-телекоммуникационной сети "Интернет", включая перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Основная литература

- 1. Высшая математика для экономистов : учебник / [Н. Ш. Кремер и др.] ; под ред. Н. Ш. Кремера. 3-е изд. М. : ЮНИТИ-ДАНА, 2015. 481 с.
- 2. Виноградова Елизавета Павловна. Математика :учебное пособие, ч. 2-М. :Флинта, 2014. - 199 с.
- 3. Кириллов, Александр Леонардович. Математика для управленцев : курс лекций : [учеб. пособие] / А. Л. Кириллов ; Сев.-Зап. акад. гос. службы. СПб. : Изд-во СЗАГС [и др.], 2000. 238 с.
- 4. Красс, Максим Семенович. Математика для экономистов : учеб. пособие / М. С. Красс, Б. П. Чупрынов. СПб.[и др.] : Питер, 2017. 464 с.
- 5. Шипачев, Виктор Семенович. Высшая математика : учеб. пособие для бакалавров / В. С. Шипачев ; под ред. А. Н. Тихонова. 8-е изд., перераб. и доп. М. : Юрайт, 2013. 447 с.
- 6. Шипачев В. С. Задачник по высшей математике : учеб. пособие / В. С. Шипачев. М. : Высш. шк., 2009. 304 с.

Все источники основной литературы взаимозаменяемы.

6.2 Дополнительная литература

Боревич 3. И. Определители и матрицы : учеб. пособие / 3. И. Боревич. - изд. 5-е, стер. - СПб.[и др.] : Лань, 2009. - 184 с.

6.3. Учебно-методическое обеспечение самостоятельной работы.

Положение об организации самостоятельной работы студентов федерального государственного бюджетного образовательного учреждения высшего образования

«Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации» (в ред. приказа РАНХиГС от 11.05.2016 г. № 01-2211);

Положение о курсовой работе (проекте) выполняемой студентами федерального государственного бюджетного образовательного учреждения высшего образования «Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации» (в ред. приказа РАНХиГС от 11.05.2016 г. № 01-2211)

6.4. Нормативные правовые документы.

Не используются

6.5. Интернет-ресурсы.

СЗИУ располагает доступом через сайт научной библиотеки http://nwapa.spb.ru/к следующим подписным электронным ресурсам:

Русскоязычные ресурсы

Электронные учебники электронно - библиотечной системы (ЭБС) «Айбукс»

Электронные учебники электронно – библиотечной системы (ЭБС) «Лань»

Рекомендуется использовать следующий интернет-ресурсы

http://serg.fedosin.ru/ts.htm

http://window.edu.ru/resource/188/64188/files/chernyshov.pdf

6.6. Иные источники.

Не используются.

7. Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

Лабораторная работа проводится в компьютерном классе. Учебная дисциплина включает использование программного обеспечения Microsoft Excel, Microsoft Word, для подготовки текстового и табличного материала.

Интернет-сервисы и электронные ресурсы (поисковые системы, электронная почта, профессиональные тематические чаты и форумы, системы аудио и видео конференций, онлайн энциклопедии, справочники, библиотеки, электронные учебные и учебнометодические материалы).

Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

№ п/п	Наименование
40.	Компьютерные классы с персональными ЭВМ, объединенными в локальные
	сети с выходом в Интернет
41.	Пакет Excel -2013, 2017, proffesional plus
42.	Мультимедийные средства в каждом кмпьютерном классе и в лекционной
	аудитории
43.	Браузер, сетевые коммуникационные средства для выхода в Интернет

Компьютерные классы из расчета 1 ПЭВМ для одного обучаемого. Каждому обучающемуся должна быть предоставлена возможность доступа к сетям типа Интернет в течение не менее 20% времени, отведенного на самостоятельную подготовку.